List 3

Matrices
A matrix is a grid of numbers. The dimensions of a matrix are written in the format " $m \times n$ ", spoken as " m by n ", where m is the number of rows and n is the number of columns (write both numbers; do not multiply them).
50. Give the dimensions of the following matrices:
(a) \(\left[\begin{array}{cc}-92 \& 8

-78 \& -67\end{array}\right]\)| 2×2 |
| :---: |

(d) $\left[\begin{array}{ccc}-13 & -63 & -5 \\ 0 & -66 & \frac{1}{2} \\ 31 & \frac{5}{22} & \frac{8}{11}\end{array}\right] 3 \times 3$
(b) $[\begin{array} { c } { - 3 6 } \\ { 7 2 } \\ { - 1 2 } \end{array}] \longdiv { 3 \times 1 }$
(e) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] 2 \times 2$
(c) \(\left[\begin{array}{ccc}75 \& 89 \& 50

-5 \& -81 \& 34\end{array}\right]\)| |
| :---: |
| 2×3 |

(f) $\begin{gathered}{\left[\begin{array}{cccccc}58 & -65 & 40 & 8 & -1 & 26 \\ -74 & 58 & -92 & -4 & -21 & 74\end{array}\right]} \\ 2 \times 6\end{gathered}$
51. Assume A and B are 3×3 matrices, and \vec{u} and \vec{v} are 3×1 column vectors. For each formula below, does it represent a scalar, a vector, a matrix, or nonsense?
(a) $A+B$ matrix
(e) $A / \stackrel{\rightharpoonup}{u}$ nonsense
(i) $A B \vec{v}$ vector
(b) $A B$ matrix
(f) $\vec{v} B$ nonsense
(j) $(A+B)(\vec{u}+\vec{v})$ vector
(c) $A+\vec{u}$ nonsense
(g) \vec{v}^{\prime} / B nonsense
(k) $A(\vec{u} \times \vec{v})$ vector
(d) $A \vec{u}$ vector
(h) $A+\vec{u}$ nonsense
(l) $(\vec{u} \times \vec{v}) A$ nonsense

How to multiply matrices: The number in row i and column j of the matrix $A B$ is the dot product of (Row i from matrix A) and (Column j from matrix B).
52. If A is a 2×2 matrix, B is a 3×3 matrix, and C is a 3×2 matrix, which of the following exist?
(a) $A A$ exists (2×2)
(g) $C A$ exists (3×2)
(b) $A B$ doesn't exist
(h) $C B$ doesn't exist
(c) $A C$ doesn't exist
(i) $C C$ doesn't exist
(d) $B A$ doesn't exist
(j) $A B C$ doesn't exist
(e) $B B$ exists (3×3)
(k) $B C A$ exists (3×2)
(f) $B C$ exists (3×2)
(ℓ) $A C A$ doesn't exist
53. (a) Calculate $\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right] \cdot\left[\begin{array}{cc}{\left[\begin{array}{cc}7 & 24 \\ 3 & -72\end{array}\right]} \\ \hline\end{array}\right.$
(b) Calculate $\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right] \cdot\left[\begin{array}{cc}3 & 6 \\ 62 & -68\end{array}\right]$
(c) Compare your answers to parts (a) and (b). They are not equal.
54. Compute the following:
(a) $\left[\begin{array}{ccc}1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3\end{array}\right]+\left[\begin{array}{ccc}11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4\end{array}\right]=\left[\begin{array}{ccc}12 & 16 & 18 \\ 4 & 13 & 22 \\ 3 & 14 & -7\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3\end{array}\right]-\left[\begin{array}{ccc}11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4\end{array}\right]=\left[\begin{array}{ccc}-10 & 12 & -2 \\ 8 & -15 & 6 \\ 7 & 8 & 1\end{array}\right]$
(c) $3\left[\begin{array}{ccc}0 & -4 & 0 \\ -1 & -1 & 3 \\ -2 & 5 & 14\end{array}\right]=\left[\begin{array}{ccc}0 & -12 & 0 \\ -3 & -3 & 9 \\ -6 & 15 & 42\end{array}\right]$
(d) $\frac{1}{6}\left[\begin{array}{ll}9 & 14 \\ 6 & 10\end{array}\right]=\left[\begin{array}{cc}3 / 2 & 7 / 3 \\ 1 & 5 / 3\end{array}\right]$
(e) $\left[\begin{array}{cc}8 & 5 \\ 0 & -5\end{array}\right]\left[\begin{array}{l}1 \\ 5\end{array}\right]=\left[\begin{array}{c}33 \\ -25\end{array}\right]$
(f) $\left[\begin{array}{cc}9 & -2 \\ 8 & 5\end{array}\right]\left[\begin{array}{l}2 \\ 6\end{array}\right]=\left[\begin{array}{c}6 \\ 46\end{array}\right]$
(g) $\left[\begin{array}{ccc}-5 & 5 & 7 \\ -2 & -3 & 2 \\ -2 & 1 & 4\end{array}\right]\left[\begin{array}{l}3 \\ 9 \\ 8\end{array}\right]=\left[\begin{array}{c}86 \\ -17 \\ 35\end{array}\right]$
(h) $\left[\begin{array}{ccc}4 & 8 & 0 \\ -3 & 3 & -3 \\ 8 & 5 & -2\end{array}\right]\left[\begin{array}{c}-2 \\ 4 \\ 7\end{array}\right]=\left[\begin{array}{c}24 \\ -3 \\ -10\end{array}\right]$
55. Compute $\left[\begin{array}{ccc}1 & -\sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1\end{array}\right]\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right] .=\left[\begin{array}{c}2-\sqrt{2} \\ 6 \sqrt{2} \\ 2+\sqrt{2}\end{array}\right]$
56. Compute the following, if they exist:
(a) $\left[\begin{array}{cc}9 & -4 \\ -5 & -5\end{array}\right]\left[\begin{array}{cc}8 & 1 \\ 0 & -3\end{array}\right]=\left[\begin{array}{cc}72 & 21 \\ -40 & 10\end{array}\right]$
(b) $\left[\begin{array}{ccc}4 & 5 & 22 \\ 8 & -13 & 4\end{array}\right]\left[\begin{array}{cccc}19 & 0 & 35 & 6 \\ 0 & 2 & 2 & 6 \\ 9 & 1 & 19 & -1\end{array}\right]=\left[\begin{array}{cccc}274 & 32 & 568 & 32 \\ 188 & -22 & 330 & -34\end{array}\right]$
(c) $\left[\begin{array}{cccc}19 & 0 & 35 & 6 \\ 0 & 2 & 2 & 6 \\ 9 & 1 & 19 & -1\end{array}\right]\left[\begin{array}{ccc}4 & 5 & 22 \\ 8 & -13 & 4\end{array}\right]$ does not exist
(d) $\left[\begin{array}{ll}3 & 0 \\ 2 & 2\end{array}\right]\left[\begin{array}{ccccc}0 & 2 & -1 & 2 & 7 \\ 3 & -4 & -1 & 1 & 8\end{array}\right]=\left[\begin{array}{ccccc}0 & 6 & -3 & 6 & 21 \\ 6 & -4 & -4 & 6 & 30\end{array}\right]$
(e) $\left[\begin{array}{cc}-2 & -4 \\ 7 & 5\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]\left[\begin{array}{ll}7 & 8 \\ 2 & 8\end{array}\right]=\left[\begin{array}{cc}72 & 48 \\ -36 & -24\end{array}\right]$
(f) $\left[\begin{array}{ccc}-4 & -3 & -5 \\ 24 & 6 & 29\end{array}\right]\left[\begin{array}{ccc}4 & 13 & 0 \\ 2 & -26 & 9\end{array}\right]$ does not exist
57. Compute the following:
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}8 & 2 \\ 3 & -3\end{array}\right]=\left[\begin{array}{cc}8 & 2 \\ 3 & -3\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}14 & 21 \\ -11 & 23\end{array}\right]=\left[\begin{array}{cc}14 & 21 \\ -11 & 23\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}99 & \frac{1}{10} \\ -37 & 2\end{array}\right]=\left[\begin{array}{cc}99 & \frac{1}{10} \\ -37 & 2\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}-4 & -2 & 1 \\ 5 & 2 & 5 \\ 7 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}-4 & -2 & 1 \\ 5 & 2 & 5 \\ 7 & 4 & 1\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}15 & 11 & -15 \\ 17 & 10 & -8 \\ 0 & 0 & -13\end{array}\right]=\left[\begin{array}{ccc}15 & 11 & -15 \\ 17 & 10 & -8 \\ 0 & 0 & -13\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]=\left[\begin{array}{ccc}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]$
(g) $\left[\begin{array}{ccc}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]$
(h) $\left.\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccccc}-39 & -66 & 84 & 66 & -10 \\ -47 & -5 & 17 & -59 & -3 \\ -94 & -90 & -5 & 86 & 31 \\ 25 & 80 & 0 & 35 & 19 \\ -72 & 40 & 99 & 48 & 57\end{array}\right]=\left[\begin{array}{ccccc}-39 & -66 & 84 & 66 & -10 \\ -47 & -5 & 17 & -59 & -3 \\ -94 & -90 & -5 & 86 & 31 \\ 25 & 80 & 0 & 35 & 19 \\ -72 & 40 & 99 & 48 & 57\end{array}\right]\right]$
58. For each of the points P_{1} through P_{7}, calculate

$$
P_{i}^{\prime}=\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right] P_{i} .
$$

(For example, for $P_{5}^{\prime}=\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]$.) Plot the points $P_{1}^{\prime}, \ldots, P_{7}^{\prime}$ on a new grid. Connect $P_{1}^{\prime} \rightarrow P_{2}^{\prime} \rightarrow P_{3}^{\prime} \rightarrow P_{4}{ }^{\prime}$ with line segments, and connect $P_{5}^{\prime} \rightarrow P_{6}{ }^{\prime} \rightarrow P_{7}{ }^{\prime}$.

Congratulations. You can write in italics!

$T\left(P_{1}\right)=(0,0) \quad T\left(P_{2}\right)=(2,4) \quad T\left(P_{3}\right)=(5 / 2,3) \quad T\left(P_{4}\right)=(1,2)$
$T\left(P_{5}\right)=(4,4) \quad T\left(P_{6}\right)=(2,0) \quad T\left(P_{7}\right)=(3 / 2,1)$

59. If $\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right] M=\left[\begin{array}{ccc}8 & 25 & 12 \\ 14 & 45 & 22\end{array}\right]$, what are the dimensions of matrix $M ? \boxed{2 \times 3}$
60. Give the dimensions of the matrix $\left[\begin{array}{cc}2 & -8 \\ 1 & 5 \\ 0 & -7\end{array}\right]\left[\begin{array}{ccccc}9 & 0 & 0 & 11 & 4 \\ -2 & -8 & 6 & 1 & \frac{1}{2}\end{array}\right]\left[\begin{array}{c}5 \\ -4 \\ 0 \\ 1 \\ -9\end{array}\right]\left[\begin{array}{lll}\frac{2}{7} & 1 & \frac{4}{7}\end{array}\right]$.
(Do not compute the matrix product.)

Dimensions $(3 \times 2)(2 \times 5)(5 \times 1)(1 \times 3)$ leads to 3×3.
61. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right], C=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], D=\left[\begin{array}{lll}0 & 5 & 2\end{array}\right]$, and $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 2 \\ 3 & 1\end{array}\right]$. Write all the products of two matrices from this list that exist (e.g., $A A$ exists, but $A C$ does not).
There are 9 valid products of this form: $A A, A B, B A, B B, C D, D C, D E, E A, E B$
——Lecture from 6 October covers only to this point.
A function f with vector inputs and outputs is a linear transformation if

$$
f(a \vec{u}+b \stackrel{\rightharpoonup}{v})=a f(\stackrel{\rightharpoonup}{u})+b f(\stackrel{\rightharpoonup}{v})
$$

for all scalars a, b and vectors \vec{u}, \vec{v}. Equivalently, $f(a \vec{u}+\vec{v})=a f(\vec{u})+f(\vec{v})$ is enough, or $f(\vec{u}+\vec{v})=f(\vec{u})+f(\vec{v})$ and $f(a \vec{u})=a f(\vec{u})$ together.
62. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=(x+y, x+1)$. Show that f is not linear.

There are many examples where the rule for a linear transformation fails for this function. One is that $3 f(1,1)=3(2,2)=(6,6)$ does not equal $f(3,3)=(6,4)$.
63. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y)=(x y, 1)$. Show that T is not linear. $T(0,5)+T(1,2)=(0,1)+(2,1)=(2,2)$ does not equal $T(1,7)=(7,1)$.
64. Which of the following are linear transformations?
(a) $g(x, y)=(y, x)$ yes
(b) $L(x, y)=(0, y-6 x)$ yes
(c) $K(x, y)=(6, y-x) n$
65. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that $L(1,1)=(3,-9)$ and $L(2,0)=(6,2)$. Calculate $L(13,3)$. From Task 26, $\left[\begin{array}{c}13 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 1\end{array}\right]+5\left[\begin{array}{l}2 \\ 0\end{array}\right]$. Therefore

$$
\begin{aligned}
L(13,3) & =3 L(1,1)+5 L(6,2) \\
& =3\left[\begin{array}{c}
3 \\
-9
\end{array}\right]+5\left[\begin{array}{l}
6 \\
2
\end{array}\right] \\
& =[9,-27]+\left[\begin{array}{l}
30 \\
10
\end{array}\right] \\
& =\left[\begin{array}{c}
39 \\
-17
\end{array}\right]
\end{aligned}
$$

66. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that $L(1,0)=(4,-1)$ and $L(0,1)=(-3,2)$.
(a) Find $L(2,-4)$.

$$
2 L(1,0)+(-4) L(0,1)=2[4,-1]+(-4)[-3,2]=[8,-2]+[12,-8]=[20,-10]
$$

(b) Give a formula for $L(x, y)$ that works for any x and $y . x\left[\begin{array}{c}4 \\ -1\end{array}\right]+y\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ or $(4 x-$ $3 y,-x+2 y)$
67. Does there exist a linear transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
f(0,1)=f(4,3), \quad f(3,0)=f(-3,6), \quad f(1,3)=f(11,11) ?
$$

Yes, $f(x, y)=(-x+4 y, 2 x+3 y)=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
68. Does there exist a linear transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
f(0,1)=f(4,3), \quad f(0,2)=f(8,6), \quad f(0,3)=f(10,8) ?
$$

No

69. If $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear transformation satisfying

$$
g(2,0,0)=(8,8,8), \quad g(0,12,0)=(1,4,-6), \quad g(0,0,5)=(10,0,15)
$$

calculate $g(-1,0,6) \cdot(-1)\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right]+0\left[\begin{array}{c}1 / 12 \\ 1 / 3 \\ -1 / 2\end{array}\right]+6\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]=[8,-4,14]$.
If a linear transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $f(0,1)=\left(u_{1}, u_{2}\right)$ and $f(0,1)=$ $\left(w_{1}, w_{2}\right)$, then

$$
f(x, y)=\left[\begin{array}{ll}
u_{1} & w_{1} \\
u_{2} & w_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

for any (x, y). We call $\left[\begin{array}{cc}u_{1} & w_{1} \\ u_{2} & w_{2}\end{array}\right]$ the "matrix for f " and write M_{f} for this matrix.
70. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $L(x, y)=(x+y, x)$. Show that L is linear and find the matrix for T.

$$
\begin{aligned}
& L\left(x_{1}, y_{1}\right)+a L\left(x_{2}, y_{2}\right)=\left(x_{1}+y_{1}, x_{1}\right)+\left(a x_{2}+a y_{2}, a y_{2}\right) \\
& =\left(x_{1}+y_{1}+a x_{2}+a y_{2}, x_{1}+a y_{2}\right)=L\left(x_{1}+a x_{2}, y_{1}+a y_{2}\right) . \text { Matrix: }\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

71. The map $T_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T_{\alpha}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

describes counter-clockwise rotation around the origin by an angle α.
Compute $T_{\pi / 4}\left(\left[\begin{array}{l}4 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 / \sqrt{2} \\ 5 / \sqrt{2}\end{array}\right]$ and $T_{\pi}\left(\left[\begin{array}{l}4 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}-4 \\ -1\end{array}\right]$
72. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation with

$$
f(1,0,0)=(5,-1,4) ; \quad f(0,1,0)=(2,1,-7) ; \quad f(0,0,1)=(3,2,4) .
$$

(a) Find $f(2,2,5) \cdot 2(5,-1,4)+2(2,1,-7)+5(3,2,4)=(29,10,14)$
(b) Give the 3×3 matrix for f.

$$
M_{f}=\left[\begin{array}{ccc}
5 & 2 & 3 \\
-1 & 1 & 2 \\
4 & -7 & 4
\end{array}\right]
$$

is 73. Match the following linear transformations with their matrices. (That is, which matrix describes (a)? Which matrix describes (b)? And so on.)
(a)

(b)

(c)

(d)

(e)

(f)

$(\mathrm{O}) \rightarrow\left(\sim \rightarrow 0,\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right.$
Matrices:

$$
\begin{gathered}
M_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad M_{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad M_{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad M_{4}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
M_{5}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad M_{6}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right] \quad M_{7}=\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right]
\end{gathered}
$$

